martes, 9 de abril de 2013

UNIDAD II

UNIDAD II



INSTITUTO TECNOLÓGICO
“ MILPA ALTA II ”

QUÍMICA

PROFESOR:
ANDY MISAEL GALVAN DURAN

ALUMNO:

GALINDO CALDIÑO ABRAHAM


GRUPO:
2SIS2



_________________________________________________________________________

INDICE

     "ELEMENTOS QUÍMICOS Y SU CLASIFICACIÓN"

2.1 Características de la clasificación periódica moderna de los elementos.

2.1.1 Tabla periódica larga y Tabla cuántica.

2.2 Propiedades atómicas y su variación periódica.

2.2.1 Carga nuclear efectiva.

2.2.2 Radio atómico, radio covalente, radio iónico.

2.2.3 Energía de ionización.

2.2.4 Afinidad electrónica.

2.2.5 Número de oxidación.

2.2.6 Electronegatividad.

2.3 Aplicación: Impacto económico o ambiental de 
algunos elementos.

2.3.1 Abundancia de los elementos en la naturaleza.

2.3.2 Elementos de importancia económica.

2.3.3 Elementos contaminantes.




____________________________________________


Características de la clasificación periódica moderna de los elementos.


La primera clasificación sistemática de los elementos tuvo su origen en los estudios sobre electroquímica realizados por Berzeliuz, quien los dividió en metales y no metales.



En 1817, J.W. Dobereiner presento una clasificación basada en las propiedades químicas y físicas de los elementos. Encontró la existencia de triadas de elementos, al observar el comportamiento semejante entre tres elementos, y hallo que el elemento central posees un peso atómico muy aproximado al promedio de los pesos de los otros dos, por ejemplo la triada de cloro, bromo y yodo.



En 1862, el geologo frances Beguyer de Chancurtois hizo una distribución de los elementos ordenándolos, por sus pesos atómicos, en una línea enrollada helicoidalmente conocida como tornillo telúrico, los elementos que tienen propiedades semejantes quedan alineados horizontalmente .



En 1864, el químico ingles J. Newlands observo que al agregar los elementos en orden creciente a sus masas atómicas , el octavo elemento tenia propiedades semejantes al primero. Dicha ley se le conoce como ley de las octavas.



La famosa tabla que Mendeleiev publicaba en 1869 en su libro "Los principios de la Química" proponía una ordenación de similar aspecto a la que los químicos emplean en la actualidad. Clasificó los 60 elementos conocidos hasta entonces, predijo la existencia de otros 10 aún desconocidos, y llegó a pronosticar algunas características de los elementos aún pendientes de descubrir. Nadie prestó especial atención a su tabla hasta que empezaron a descubrirse elementos predichos por él. Con la aparición del espectroscopio se descubrieron el galio, por Lecoq De Boisbandren, el escandio, por Cleve, y el germanio, por Winkler.




El trabajo de Moseley ofrecía un método para determinar exactamente cuántos puestos vacantes quedaban en la Tabla Periódica. Una vez descubierto, los químicos pasaron a usar el número atómico, en lugar del peso atómico, como principio básico de ordenación de la Tabla. El cambio eliminó muchos de los problemas pendientes en la disposición de los elementos.



La tabla periódica representa una de las ideas más extraordinarias de la ciencia moderna, ya que dio un orden a la Química y durante casi 200 años de vida, ha sabido adaptarse y madurar sin apenas variaciones.


______________________________________

TABLA PERIODICA 




La clasificación de los elementos basada en su número atómico dio como resultado la tabla periódica moderna, de Alfred Werner, actualmente conocida como tabla periódica larga. Esta tabla está integrada por todos los elementos encontrados en la naturaleza, así como los obtenidos artificialmente (sintéticos) en el laboratorio, y se encuentran acomodados en función de la estructura electrónica de sus átomos, observándose un acomodó progresivo de los electrones de Valencia en los niveles de energía (periodos). Los elementos que presentan configuraciones electrónicas externas similares, quedan agrupados en columnas verticales llamadas familias o grupos. Podemos distinguir que en ella se encuentran ubicados también por clases de elementos, pesados, grupos o familias y bloques.

CLASES DE ELEMENTOS
            Cuando los elementos se clasifican de acuerdo a sus características físicas y químicas, se forman dos grandes grupos: metales y no metales. Además, existe un tercer conjunto de elementos que se caracterizan por la indefinición de sus propiedades ubicadas entre los metales y no metales, llamados metaloides o semimetales.
Metales.
            Los metales son reconocidos por sus propiedades físicas, como el brillo metálico, conductividad eléctrica y térmica, la dureza, la ductibilidad y la maleabilidad. En los metales del mismo periodo es mas reactivo el que tiene un número menor de electrones en su capa externa. Comparando al sodio y al aluminio, que se encuentran en el periodo dos, el sodio es mas reactivo porque tiene un electrón de Valencia y el aluminio tiene tres, pues es más fácil ceder un electrón que dos o más.
                                                Na       1s2,2s2,2p6,3s1
---------------------->    Capa externa 1 electrón de Valencia
                                                Al       1s2, 2s2, 2p6, 3s2, 3p1
---------------------->   Capa externa 3 electrones de Valencia


Como se observa en la tabla, casi el 80% de los elementos se clasifican como metales


No metales.
Los no metales son elementos que tienden a ganar electrones para completar su capa externa (capa de Valencia) con ocho y, así, lograr una configuración estable de gas noble. Son mas reactivos los de menor número atómico, porque en este caso la distancia entre el núcleo y los electrones de su ultima orbita es menor y, por lo tanto, la fuerza de atracción del núcleo hacia los electrones de otros elementos es mayor. Así, en el grupo de los halógenos el mas reactivo es el flúor, con numero atómico 9, y el menos reactivo es el yodo, con numero atómico 53; ya que aunque los dos tienen siete electro-nes en su capa de Valencia (ns2, np5), los del fluor son atraídos con mayor fuerza, por estar más cerca del núcleo (nivel 2), que los del yodo, que está en el nivel 5.

Metaloides
Los elementos boro (B), silicio (Si), germanio (Ge), arsénico (As), antimonio (Sb), telurio (Te) y polonio (Po), que se encuentran abajo y arriba de la Iínea en escalera que divide a los metales de los no metales, se denominan metaloides porque sus propiedades son intermedias entre los metales y los no metales; por ejemplo, conducen la corriente eléctrica, pero no al grado de los metales.

PERIODO
En la tabla periodica, los elementos se encuentran ordenados en lineas horizontales . Son siete en total y hay cortos y largos.  Cada periodo comienza con un metal activo y termina con un gas noble, haciendo el recorrido de izquierda a derecha . Cabe señalar que en un periodo el numero atomico aumenta en sentido del recorrido.

SIMBOLO DE LOS ELEMENTOS
Se llama elemento a la sustancia que no puede descomponer en otra mas sencilla por metodos quimicos . Cada elemento esta representado en la tabla periodiaca mediante un simbolo.
Berzelius fue el primero en utilizar la simbología moderna, propuso que a todos los elementos se les diera un símbolo tomando la primera letra de su nombre. Cuando había dos o mas elementos cuyo nombre comenzaba  la misma letra , se añadía una segunda letra del nombre , en otros casos se utilizaba la raíz latina del elemento. En la escritura de los símbolos la primera letra siempre es mayúscula y la segunda es minúscula.

CONSTRUCCION DE TABLA PERIODICA CON BASE EN LA CONFIGURACION ELECTRONICA.

Los elementos están ordenados en la tabla periódica conforme su número atómico y el tipo de subnivel en el que se encuentra colocado su ultimo electrón (electrón diferencial).
Los números atómicos de los elementos conocidos hasta ahora solo permiten ocupar orbítales de los subniveles s, p, d, y f., debido a esto, la tabla periódica de los elementos se divide en cuatro bloques: bloque s, bloques p, bloques d y bloques f.
Los elementos que forman los bloques s y p se llaman representativos, y conforme las familias de los subgrupos A. Los elementos de la familia IA y IIA tienen su electrón diferencial en el orbital de un subnivel s y de la familia IIIA , hasta VIIIA , en el subnivel p.
 El conjunto de los elementos con electrón diferencial situado en el subnivel d, forma los grupos o familias B y se denomina de transición.
Los elementos del bloque f que forman la serie del actinio y lantano tienen sus electrón diferencial colocado en un orbital de subnivel f y reciben el nombre de tierras raras o de transicion interna.

GRUPOS O FAMILIAS
Son conjuntos de elementos que tienen propiedades químicas muy similares. Están colocados en 18 columnas verticales y se identifican con números romanos del I al VIII. Se encuentran divididos en grupos A y B. A los elementos de los grupos A, del IA al VIIA, se les llama elementos representativos, y a los de los grupos B, elementos de transición.

Nombres de las Familias o Grupos Representativos
Grupo I                Metales Alcalinos
Grupo II                Metales Alcalinotérreos
Grupo III               Familia del boro
Grupo IV              Familia del carbono
Grupo V               Familia del nitrógeno
Grupo VI              Familia del oxígeno o calcógenos
Grupo VII             Familia de los halógenos
GrupoVIII             Gases nobles o inertes


Grupo IA
Los elementos que pertenecen a este grupo son conocidos como metales alcalinos. Todos son suaves y brillantes (exceptuando al hidrogeno, que es un no metal muy reactivos con el aire y el agua; por ello, no se encuentran libres en la naturaleza y cuando se logran aislar, para evitar que reaccionen, se deben conservar sumergidos en ciertos líquidos, como por ejemplo aceites o éter de petróleo. Reaccionan con los elementos del grupo VIIA, formando compuestos iónicos.
                Su configuración electrónica exterior es (ns1); tienden a perder este electrón y a quedar con numero de oxidación de +1. Estos metales son los más electropositivos. El francio, que es el último elemento de este grupo, es radiactivo.

                En la tabla periódica se coloca al hidrogeno en este grupo debido al único electrón que posee; es un elemento gaseoso y sus propiedades no son las mismas que las del resto de los metales alcalinos.



Grupo IIA
Estos elementos presentan ciertas propiedades similares a los metales alcalinos, pero son un poco menos reactivos y se les conoce como metales alcalinotérreos. Con el oxigeno del aire forman óxidos, y reaccionan con los elementos del grupo VIIA (halógenos) formando sales.
                Tienen completo su orbital s en su capa externa (ns2) y tienden a perder estos electrones tomando la configuración del gas noble que les antecede; por ello, su número de oxidación es de +2.
                La reactividad de estos metales aumenta al desplazarse de arriba hacia abajo en el grupo; por ejemplo, el berilio y el magnesio reaccionan con el oxigeno formando óxidos solo a temperaturas elevadas, mientras que el calcio, el estroncio y el bario lo hacen a temperatura ambiente. El radio, al igual que el francio, del grupo anterior, es un elemento radiactivo.

Grupo IIIA
Este grupo está formado por el boro, el aluminio, el galio, el indio y el talio. El boro es un metaloide, y de los cuatro elementos metálicos restantes, tal vez el más importante por sus propiedades y abundancia es el aluminio, el cual, al combinarse con el oxigeno, forma una cubierta que impide cualquier reacción posterior; por ello, este metal es empleado en la elaboración de artículos y materiales estructurales.
                La configuración electrónica externa que presentan es (ns2np1). Estos elementos forman también compuestos moleculares, que son característicos de los no metales; esto se explica por la configuración electrónica que presentan y por su ubicación en la tabla, ya que al desplazarse de izquierda a derecha en la tabla periódica, el carácter metálico de los elementos representativos empieza a perderse gradualmente.


Grupo IVA
El carbono es un no metal y es el elemento que encabeza este grupo, al que también se le conoce como la familia del carbono; los dos elementos siguientes, el silicio y el germanio, son metaloides; estos tres primeros elementos forman compuestos de carácter covalente. El estaño y el plomo, elementos que finalizan este grupo, son metales.
                La configuración electrónica externa de los elementos de este grupo es (ns2np2). La tendencia que presentan en la disminución de sus puntos de fusión y ebullición, del silicio hasta el plomo, indica que el carácter metálico de los elementos de este grupo va en aumento.
                Sin duda, el mas importante de este grupo es el carbono, que da origen a todos los compuestos orgánicos; es decir, la química de la vida. El silicio es un elemento muy abundante en la corteza terrestre y es utilizado con frecuencia en la fabricación de "chips" de microcomputadoras. El germanio, por ser un semiconductor de la corriente eléctrica, es empleado en la manufactura de transistores; y los dos últimos, el plomo y el estaño, tienen usos típicos de los metales.

Grupo VA
Este grupo se conoce como familia del nitrógeno. Está compuesto por el nitrógeno y el fósforo, que son no metales; el arsénico y el antimonio, que son metaloides; y por el bismuto, que es un metal. Por lo mismo, este grupo presenta una variación muy notoria en las propiedades físicas y químicas de sus elementos.
                La configuración electrónica externa que presentan es (ns2np3). El nitrógeno, que existe en forma de gas diatónica, es un no metal, importante como compuesto principal de la atmósfera terrestre (alrededor del 78%), y es vital para las plantas y los animales. El fósforo es un no metal sólido de importancia biológica que al reaccionar con el oxigeno del aire arde violentamente con desprendimiento de grandes cantidades de calor.

Grupo VIA
Forma la familia del oxigeno y está constituido por oxigeno, azufre y selenio, que son no metales; así como telurio y polonio, que son metaloides.
La configuración electrónica externa que presentan es (ns2np4). Tienen la tendencia a aceptar dos electrones para completar su última capa y formar compuestos iónicos con muchos metales.
                Los elementos de este grupo reaccionan con los no metales de otros grupos, formando compuestos moleculares, especialmente el oxigeno, que se encuentra en el aire en forma de molécula diatónica (O2) y de ozono (O3). Además, es muy reactivo, ya que forma compuestos con casi todos los elementos. Es necesario para la combustión y esencial para la vida.

Grupo VIIA
Así como los metales alcalinos, los elementos del grupo VIIA o halógenos muestran gran similitud química entre ellos. Los elementos de este grupo son no metales y existen como moléculas diatónicas en su estado elemental. Los halógenos son elementos muy reactivos a temperatura ambiente; el bromo es líquido y el yodo sólido. Sin embargo, el astatine es un elemento radiactivo y se conoce poco acerca de sus propiedades.
                La configuración electrónica externa que presentan es (ns2np5) y tienden a ganar un electrón para completar su ultima capa. Por su alta reactividad no se encuentran en estado puro en la naturaleza; a los aniones que forman al ganar un electrón se les conoce como halogenuros o haluros. Forman compuestos iónicos con los metales alcalinos o alcalinotérreos, y compuestos moleculares entre ellos o con los otros no metales.

Grupo VIIIA o grupo cero
En este grupo se encuentran los gases nobles: helio, neón, argón, kriptón, xenón y radón. Tienen su ultima capa electo6nica completa (ns2np6), excepto el helio, cuya única capa es (1s2), que también está completa; por ello, su tendencia a combinarse entre ellos o con otros elementos es poca o casi nula. Las energías de ionización de estos elementos están entre las más altas y no presentan tendencia a ganar electrones; debido a esto, durante muchos años se les llamo gases inertes, pues se pensaba que no reaccionaban. En la actualidad, se han logrado sintetizar algunos compuestos, pero comúnmente se emplean como gases puros.
                El helio es el más ligero. Comparado con el aire, tiene la séptima parte de su peso; por lo tanto, tiene un poder de elevación considerable. Otro gas de este grupo, el argón, es un excelente conductor del calor, y se utiliza en bulbos de luz y soldadura de magnesio para evitar la oxidación.
Grupos B
                A los elementos que pertenecen a los grupos B en la tabla periódica, se les conoce como elementos de transición; un elemento de transición es aquel que tiene parcial-mente ocupado su orbital d o f. Se encuentran ubicados en los periodos 4, 5, 6 y 7; los ubicados en el periodo 6 comprenden a la serie de los lantánidos, y los del periodo 7, a la de los actínidos; a estas dos series se les conoce como metales de transición interna.


METALES DE TRANSICION
Los metales de transición se localizan en la parte central de la tabla periódica y se les identifica con facilidad mediante un número romano seguido de la letra "b" en muchas tablas. No hay que olvidar, sin embargo, que ciertas tablas periódicas emplean un sistema distinto de rótulos, en el que los primeros grupos de metales de transición están marcados como grupos "a" y los dos últimos grupos de metales de transición se identifican como grupos "b". Otras tablas no emplean la designación de "a" o "b".

METALES DE TRANSICIÓN INTERNOS
Las dos filas de la parte inferior de la tabla periódica se conocen como metales de transición internos. Localiza el lantano con el numero atómico 57. La serie de elementos que siguen al lantano (los elementos con número atómico del 58 al 71) se conocen como los lantánidos. Estos elementos tienen dos electrones externos en el subnivel 6s, más electrones adicionales en el subnivel 4f. De manera similar, la serie de elementos que siguen al actino (los elementos con número atómico del 90 al 103) se conocen como actínidos, que tienen dos electrones externos en el subnivel 7s, más electrones adicionales en el subnivel 5f. En el pasado, a los elementos de transición internos se les llamaba "tierras raras", pero esta no era una buena clasificación, pues la mayor parte no son tan raros como algunos otros elementos son, sin embargo muy difícil de separar.

______________________________________

PROPIEDADES ATÓMICAS Y SU VARIACIÓN 
PERIODICA

Este tema trata sobre las variaciones periódicas en las propiedades físicas y comportamiento químico de los elementos.

·       Carga nuclear
·       Radio atómico
·       Radio iónico
·       Potencial de ionización
·       Afinidad Electrónica
·       Electronegatividad

Carga Nuclear Efectiva:
La definición de carga nuclear nos da la oportunidad de entender los efectos de protección sobre las propiedades periódicas.

Radio Atómico:
Muchas propiedades físicas como la densidad, puntos de ebullición y de fusión tienen relación con el tamaño del átomo, la densidad electrónica se extiende mas allá del núcleo por lo cual se piensa en el tamaño atómico como el volumen que contiene cerca de 90% de la densidad electrónica alrededor del núcleo.
Al querer  dar más detalles se proporciona el tamaño del átomo en términos de radio atómico, siendo esta la mitad de la distancia entre dos núcleos de dos átomos.
Átomos unidos entre sí en una red tridimensional: su radio es solo la mitad de la distancia de un núcleo a otro de dos átomos vecinos.
Elementos existentes como moléculas diatómicas simples: su radio será la mitad de la distancias entre núcleos de dos átomos de una molécula.



Radio Iónico:

Es el radio de los cationes y aniones. Se mide por difracción de rayos X.
El radio iónico afecta propiedades químicas y físicas de los compuestos iónicos.
Un átomo neutro que se convierte en un ion, se espera que cambie su radio, si forma un anión el radio aumenta (por la carga nuclear es constante pero la repulsión resultante aumenta la nube electrónica).


Potencial de ionización:

Existe una relación entre la configuración electrónica y el comportamiento químico. La estabilidad de los electrones es reflejada en la energía de ionización de los átomos.
La energía de ionización es la energía mínima es expresada en kj/mol, Esta  es la cantidad de energía necesaria para separar un mol de electrones de un mol de átomos en estado gaseoso.




Afinidad Electrónica:

Es la capacidad de un átomo de aceptar uno o más electrones, Es un cambio de energía  que sucede cuando un átomo  en estado gaseoso acepta un electrón en forma de anión.

Electronegatividad:

Es la capacidad que tiene un átomo para atraer electrones. De la misma manera que la afinidad electrónica y la energía de ionización, la electronegatividad aumenta hacia arriba y ala derecha en la tabla periódica.

Número de oxidación.
Carga eléctrica formal que se asigna a un átomo en un compuesto.
El número de oxidación presupone que hay enlaces iónicos entre átomos unidos por enlace covalente. Su variación en una reacción química indica la existencia de un proceso de oxidación-reducción.
Se puede definir como el número de cargas que habría que asignar a cada uno de los átomos de los distintos elementos que forman un compuesto, si todos ellos pasaran al estado de iones. Así, el número de oxidación de cualquier elemento en estado natural (atómico o molecular) es cero, y el de un ion es igual a su carga. En los compuestos covalentes, los pares de electrones se asignan al átomo más electronegativo de los dos que los comparten, y así ambos se consideran iones, quedando con número de oxidación negativo el átomo más electronegativo y con número de oxidación positivo el menos electronegativo. El oxígeno tiene número de oxidación -2, excepto en los peróxidos, que tiene -1. El hidrógeno combinado con elementos más electronegativos tiene de número de oxidación +1, y -1 cuando se combina con elementos menos electronegativos.
 Electronegatividad.
La electronegatividad de un elemento es la capacidad que tiene un átomo de dicho elemento para atraer hacia sí los electrones, cuando forma parte de un compuesto. Si un átomo tiene una gran tendencia a atraer electrones se dice que es muy electronegativo (como los elementos próximos al flúor) y si su tendencia es a perder esos electrones se dice que es muy electropositivo (como los elementos alcalinos). La electronegatividad tiene numerosas aplicaciones tanto en las energías de enlaces, como en las predicciones de la polaridad de los enlaces y las moléculas y, también, en la racionalización de los tipos de reacciones que pueden experimentar las especies químicas.
Tendencia que presenta un átomo a atraer electrones de otro cuando forma parte de un compuesto. Si un átomo atrae fuertemente electrones, se dice que es altamente electronegativo, por el contrario, si no atrae fuertemente electrones el átomo es poco electronegativo. Cabe destacar, que cuando un átomo pierde fácilmente sus electrones, este es denominado “electropositivo”. La electronegatividad posee relevancia en el momento de determinar la polaridad de una molécula o enlace, así como el agua (H2O) es polar, en base a la diferencia de electronegatividad entre Hidrógeno y Oxígeno.
En la tabla periódica la electronegatividad aumenta de izquierda a derecha en un período y de abajo hacia arriba en un grupo.

Abundancia de los Elementos en la naturaleza

El número de elementos que existen en la naturaleza es de 92 pero pueden añadirse algunos elementos obtenidos artificialmente, que hacen un total de 118, de los cuales los metales representan un 75% y el resto no metales, pero que tienen una gran importancia económica.
Los elementos metálicos más comunes son los siguientes: aluminio, bario, berilio, bismuto, cadmio, calcio, cerio, cromo, cobalto, cobre, oro, iridio, hierro, plomo, litio, magnesio, manganeso, mercurio, molibdeno, níquel, osmio, paladio, platino, potasio, radio, rodio, plata, sodio, tantalio, talio, torio, estaño, titanio, volframio, uranio, vanadio y zinc.
La mayor parte de los elementos son sólidos a temperatura ambiente, dos de ellos (mercurio y bromo) son líquidos y el resto son gases. Pocos elementos se encuentran en la naturaleza en estado libre (no combinados), entre ellos el oxígeno, nitrógeno; los gases nobles (helio, neón, argón, kriptón, xenón y radón); azufre, cobre plata y oro. Los más de los elementos se encuentran en la naturaleza combinados con otros elementos formando compuestos.
Los átomos de un elemento tienen el mismo número atómico, pero no necesariamente el mismo peso atómico. Los átomos con el mismo número atómico, pero diferentes pesos, se llaman isótopos. Todos los elementos tienen isótopos, aunque en ciertos casos sólo se conocen los isótopos sintéticos. Muchos de los isótopos de los diferentes elementos son inestables, o radiactivos, y por ende se desintegran para forma átomos estables, del mismo elemento o de algún otro.
Se cree que los elementos químicos son resultado de la síntesis por procesos de fusión a muy altas temperaturas (en el orden de los 100 000 000ºC o 180 000 000ºF y superiores).
La fusión de las partículas nucleares simples (protones y neutrones) lleva primero a núcleos atómicos como el helio y luego a los núcleos más pesados y complejos de los elementos ligeros (litio, boro, berilio y así sucesivamente). Los átomos de helio bombardean a los átomos de elementos ligeros y producen neutrones. Los neutrones son capturados por los núcleos de los elementos y producen otros más pesados. Estos dos procesos -fusión de protones y captura de neutrones- son los procesos principales con que se forman los elementos químicos.
Se han sintetizado varios elementos presentes solamente en trazas o ausentes en la naturaleza. Son el tecnecio, prometio, astatinio, francio y todos los elementos con números atómicos superiores a 92.
La abundancia de los elementos en las rocas de la Tierra, la Tierra en general, los meteoritos, el sistema solar, las galaxias o todo el universo, corresponde al promedio de las cantidades relativas de los elementos químicos presentes o, en otras palabreas, a la composición química promedio. La abundancia de los elementos está dada por el número de átomos de un elemento de referencia. El silicio comúnmente se toma como el elemento de referencia en el estudio de la composición de la Tierra y los meteoritos, y los datos están dados en átomos por 106 átomos de silicio. Los resultados de las determinaciones astronómicas de la composición del Sol y las estrellas con frecuencia se expresan en átomos por 1010 átomos de hidrógeno. Los análisis químicos ordinarios, entre ellos las técnicas avanzadas para estudios de trazas de elementos (tales como activación neutrónica o dilución isotópica), sirven para determinar la composición de rocas y meteoritos. La composición del Sol y las estrellas puede obtenerse de análisis espectroscópicos cuantitativos. Los elementos más abundantes en la superficie de la Tierra son oxígeno, silicio, magnesio, calcio, aluminio, así como el hierro. En el universo, el hidrógeno y el helio constituyen más del 95% de la materia total.
La composición isotópica de los elementos es casi la misma en todo el material terrestre y en los meteoritos. La abundancia nuclear de los isótopos se puede calcular de la composición isotópica de un elemento y de su abundancia cósmica.
Los valores de abundancia nuclear muestran una clara correlación con ciertas propiedades nucleares, y puede suponerse que son una buena aproximación de la distribución del rendimiento original del proceso termonuclear que provocó la formación de los elementos. Los valores empíricos de abundancia pueden así servir de base para consideraciones teóricas acerca del origen de la materia y del universo y han conducido a la siguiente conclusión: no existe un mecanismo único y simple por el cual puedan haberse formado los elementos, con su composición isotópica observada. La materia del cosmos parece ser una mezcla de material formado en diferentes condiciones y tipos de procesos nucleares.
La distribución de los elementos químicos en las principales zonas de la Tierra (corteza, manto, núcleo) depende de la historia remota y de la evolución subsecuente tanto de la Tierra como del sistema solar. Dado que estos eventos ocurrieron hace largo tiempo y nohay evidencia directa de lo que en realidad sucedió, hay mucha especulación en la explicación actual de la distribución de los elementos en las principales zonas de la Tierra.
Antes de que evolucionara el sistema proto-solar para formar el Sol y los planetas probablemente fue una gran nube de gas, polvo y alguna otra materia en forma de lente y girando.
El interior de esta nube, contraída y calentada en un inicio por atracción gravitacional, elevó su temperatura y presión lo suficiente para iniciar las reacciones nucleares, generando luz y calor. La materia en los remolinos dentro de las zonas periféricas de la nube, con el tiempo coalesció y formó los planetas individuales. Porciones de elementos ligeros más volátiles (como N, C, O e H) escaparon del interior más caliente del sistema y fueron enriquecidos en los grandes planetas externos menos densos (Júpiter, Saturno, Urano y Neptuno). Los elementos más pesados, menos volátiles (como Ca, Na, Ng, Al, Si, K, Fe, Ni y S), tendieron a permanecer cerca del centro del sistema y fueron enriquecidos en los pequeños planetas internos más densos (Mercurio, Venus, Tierra y Marte).
Se piensa que el crecimiento de la Tierra fue de una nube cuya composición era muy parecida a la del tipo de los meteoritos rugosos conocidos como condritas. La proto-Tierra fue probablemente homogénea, esferoide, sin zonas delimitadas, de composición aproximadamente condrítica.
Según la hipótesis de una Tierra sin zonas bien delimitadas y el modelo condrítico, la aleación Ni-Fe formó el núcleo, y las fases remanentes formaron el manto. En una época muy remota de su historia (hace 4-5 x 109 años) es probable que tuviera principalmente forma sólida. La mayoría de los estudiosos de la Tierra suponen que un calentamiento posterior, debido a la contracción adiabática y decaimiento radiactivo, originó un extenso fenómeno de fusión, la aleación Ni-Fe, su fundió inicialmente; por su mayor densidad, la aleación se mantuvo en su posición y formó el núcleo. Este evento se conoce como la catástrofe del hierro. Al continuar la fusión habría creado tres líquidos inmiscibles; silicatos, sulfuros y aleaciones. Los silicatos, sulfuros y otros compuestos remanentes podrían haber formado el manto que rodea el núcleo.
La nueva capa oceánica, compuesta principalmente de rocas basálticas, daría lugar a los arrecifes de alta mar (centros de difusión) por medio de una fusión parcial del manto. En relación con el manto, la corteza basáltica está enriquecida en Si, Al, Ca, Na, K y un gran número de elementos iónicos litófilos; pero es pobre en Mg, Fe y ciertos metales de transición (del grupo VIII en particular). El proceso de fusión parcial de la parte superior del manto y la ascensión del magma formaron una nueva corteza, y puede ser el mecanismo dominante para la concentración de los elementos que enriquecieron la capa de la corteza a expensas del manto.
La fusión parcial también ocurrió dentro de la corteza continental, provocando a la formación y ascenso de magmas comparativamente ricos en elementos del manto, y pobre en relación con los elementos de las rocas de las que provienen los magmas.

Éstos tienden a moverse hacia arriba con el tiempo, solidificándose en ocasiones y formando parte de la corteza continental con diversas zonas, una superior (sial), teniendo una composición granítica, y una inferior (sima), de composición desconocida, probablemente parecida a la del basalto. La corteza granítica superior es aún más abundante en elementos de la corteza. Modificaciones posteriores de la corteza continental superior pueden ocurrir a través de procesos como la sedimentación climática, el metamorfismo y la diferenciación ígnea.
Serie de elementos que comienza con el actinio (número atómico 89) y que incluye el torio, protactinio, uranio y los elementos transuránicos hasta el laurencio (número atómico 103). Estos elementos tienen gran parecido químico con los lantánidos, o tierras raras, elementos de números atómicos 57 a 71. Sus números atómicos, nombres y símbolos químicos son: 89, actinio (Ac), el elemento prototipo, algunas veces no se incluye como un miembro real de la serie; 90, torio (Th); 91, protacnio (Pa); 92, uranio (U); 93, neptunio (Np); 94, plutonio (Pu); 95, americio (Am); 96, curio (Cm); 97, berkelio (Bk); 98, californio (Cf); 99, einsteinio (Es); 100, fermio (Fm); 101, mendelevio (Md); 102, nobelio (No); 103,laurencio (Lr).
A excepción del torio y el uranio, los actínidos no están presentes en la naturaleza en cantidades apreciables. Los elementos transuránicos se descubrieron e investigaron como resultado de sus síntesis en reacciones nucleares. Todos son radiactivos, y con excepción del torio y el uranio, incluso en pequeñas cantidades, deben manejarse con precauciones especiales.
La mayor parte de los actínidos tienen lo siguiente en común: cationes trivalentes que forman iones complejos y quelatos orgánicos; los sulfatos, nitratos, halogenuros, percloratos y sulfuros correspondientes son solubles, mientras que los fluoruros y oxalatos son insolubles en ácidos.
Elementos químicos con los siguientes números atómicos y nombres: 23, vanadio, V; 41, niobio, Nb; 73, tántalo, Ta; 24, cromo, Cr; 42, molibdeno, Mo; 74, tungsteno, W; 25, manganeso, Mn; 43, tecnecio, Tc y 75, renio, Re. Estos elementos son un subgrupo integrante de los grupos V, VI y VII de la tabla periódica, respectivamente. En estado elemental todos son metales de alta densidad, alto punto de fusión y baja volatilidad. La clasificación como elementos metaloácidos se refiere al hecho de que sus óxidos reaccionan con el agua para producir soluciones ligeramente ácidas, en contraste con el comportamiento más usual de los óxidos de otros metales que dan soluciones básicas.
Elementos que aparecen en la naturaleza sin combinarse con otros. Además de los gases libres de la atmósfera, existen alrededor de 20 elementos que se encuentran bajo la forma de minerales en estado nativo. Éstos se dividen en metales, semi-metales y no metales.
El oro, la plata, el cobre y el platino son los más importantes entre los metales, y cada uno de ellos se ha encontrado en ciertas localidades en forma lo suficientemente abundante para que se exploten como si fueran minas. Otros metales menos comunes son los del grupo del platino, plomo, mercurio, tantalio, estaño y zinc. El hierro nativo se encuentra, en escasas cantidades, lo mismo como hierro terrestre que como procedente de meteoritos.
Los semi-metales nativos pueden dividirse en: 1) el grupo del arsénico, que incluye al arsénico, antimonio y bismuto, y 2) el grupo del telurio, que incluye el telurio y el selenio.
Los no metales nativos son el azufre y el carbón en sus formas de grafito y diamante. El azufre nativo es la fuente industrial principal de este elemento.
Al grupo de 17 elementos químicos, con números atómicos 21, 39 y 57-71, se le conoce con el nombre de tierras raras; el nombre lantánidos se reserva para los elementos del 58 a 71. El nombre de tierras raras es inapropiado, porque no son ni raras ni tierras.
La mayor parte de las primeras aplicaciones de las tierras raras aprovecharon sus propiedades comunes, utilizándose principalmente en las industrias del vidrio, cerámica, de alumbrado y metalurgia. Hoy, estas aplicaciones se sirven de una cantidad muy considerable de la mezcla de tierras raras tal como se obtienen del mineral, aunque algunas veces esta mezcla se complementa con la adición de cerio o se eliminan algunas de sus fracciones de lantano o cerio.
Estos elementos presentan espectros muy complejos, y los óxidos mezclados, cuando se calientan, dan una luz blanca intensa parecida a la luz solar, propiedad que encuentra su aplicación en arcos con núcleo de carbón, como los que se emplean en la industria del cine.
Los metales de las tierras raras tienen gran afinidad por los elementos no metálicos; por ejemplo, hidrógeno, carbono, nitrógeno, oxígeno, azufre, fósforo y halogenuros.
Cantidades considerables de las mezclas de metales raros se reducen a metales, como el "misch metal", y estas aleaciones se utilizan en la industria metalúrgica. Las aleaciones de cerio y las mezclas de tierras raras se emplean en la manufactura de piedras de encendedor. Las tierras raras se utilizan también en la industria del petróleo como catalizador. Granates de itrio y aluminio (YAG) se emplean en el comercio de joyería como diamantes artificiales.
Aunque las tierras raras están ampliamente distribuidas en la naturaleza, por lo general se encuentran en concentración baja, y sólo existen en alta concentración en las mezclas de cierto número de minerales. La abundancia relativa de las diferentes tierras raras en algunas rocas, formaciones geológicas, astrofísicos y cosmólogos.
Los elementos de las tierras raras son metales que poseen propiedades individuales particulares. Muchas de las propiedades de los metales de las tierras raras y de las mezclas indican que son muy sensibles a la temperatura y la presión. También son diferentes cuando consideramos las medidas entre los ejes cristalinos de los metales; por ejemplo, la conductividad eléctrica, la constante de elasticidad, etc. Las tierras raras forman sales orgánicas con ciertos compuestos quelato-orgánicos. Esto quelatos, que han reemplazado parte del agua alrededor de los iones, aumenta las diferencias en las propiedades entre cada elemento de las tierras raras, lo que se ha aprovechado en los métodos modernos de separación por intercambio iónico.
En términos amplios, son los elementos con número atómico del 21-31, 39-49 y 71-81. En la clasificación más estricta de los elementos de transición, preferida por muchos químicos, incluyen sólo los elementos de número atómico 22-28, 40-46 y 72 al 78. Todos los elementos de esta clasificación tienen uno o más electrones en la subcapa parcialmente llena y tienen, por lo menos, un estado de oxidación bien conocido.
Todos los elementos de transición son metales y, en general, se caracterizan por sus elevadas densidades, altos puntos de fusión y bajas presiones de vapor. En el mismo subgrupo, estas propiedades tienden a aumentar con el incremento del peso atómico. La facilidad para forma enlaces metálicos se demuestra por la existencia de una gran variedad de aleaciones entre diferentes metales de transición.
Los elementos de transición incluyen la mayor parte de los metales de mayor importancia económica, como el hierro, níquel y zinc, que son relativamente abundantes por una parte, y, por otra, los metales para acuñación, cobre, plata y oro. También se incluyen elementos raros y poco conocidos, como el renio y el tecnecio, el cual no se encuentra en la Tierra en forma natural, aunque sí en pequeñas cantidades como producto de fisión nuclear.
En sus compuestos, los elementos de transición tienden a exhibir valencias múltiples; la valencia máxima tiende a incrementarse de 3+ en la serie (Sc, Y, Lu) a 8+ en el quinto miembro (Mn, Re). Una de las características más importantes de los elementos de transición es la facilidad con que forman iones complejos y estables. Las características que contribuyen a esta capacidad son la elevada relación carga-radio y la disponibilidad de sus orbitales d parcialmente llenos, los cuales pueden ser utilizados para forma enlaces. La mayor parte de los iones y compuesto de los metales de transición son coloridos, y muchos de ellos paramagnéticos. Tanto el color como el paramagnetismo se relacionan con la presencia de electrones desapareados en la subcapa d. Por su capacidad para aceptar electrones en los orbitales d desocupados, los elementos de transición y sus compuestos exhiben con frecuencia propiedades catalíticas.
Por lo general, las propiedades de los elementos de transición son intermedias entre los llamados elementos representativos, en que las subcapas están completamente ocupadas por electrones (elementos alcalinos; halógenos), y los interiores o elementos de transición f, en que los orbitales de las subcapas desempeñan un papel mucho menos importante en las propiedades químicas.
Elementos sintéticos con números atómicos superiores al del uranio (número atómico 92).
Son miembros de los actínidos, desde el neptunio (número atómico 93) hasta el laurencio (número atómico 103) y los elementos transactínidos (con números atómicos superiores a 103).
El concepto de peso atómico en el sentido que se da a los elementos naturales no es aplicable a los elementos transuránicos, ya que la composición isotópica de cualquier muestra depende de su fuente. En la mayor parte de los casos el empleo de número de masa del isótopo de mayor vida media en combinación con una evaluación de su disponibilidad ha sido adecuado. Buenas elecciones en el momento actual son: neptunio, 237; plutonio, 242; americio, 243; curio, 248; berkelio, 249; californio, 250; einstenio, 254; fermio, 257; mendelevio, 258; nobelio, 259; laurencio, 260; rutherfordio (elemento 104), 261; hafnio (elemento 105), 262 y elemento 106, 263.
Los actínidos son químicamente similares y tienen gran semejanza química con loslantánidos o tierras raras (números atómicos 51-71). Los transactínidos, con números atómicos 104-118, deben ser colocados en una tabla periódica ampliada debajo del periodo de elementos comenzando con el hafnio, número atómico 72, y terminando con el radón, número atómico 86. Esta disposición permite predecir las propiedades químicas de estos elementos y sugiere que tendrán una analogía química, elemento por elemento, con los que aparecen inmediatamente arriba de ellos en la tabla periódica.
Los transuránicos, incluyendo hasta al fermio (número atómico 100), se producen en grandes cantidades por medio de la captura sucesiva de electrones en los reactores nucleares. El rendimiento disminuye con el incremento del número atómico y el más pesado que se produce en cantidades apreciables es el einstenio (número 99). Muchos Página 75 otros isótopos se obtienen por bombardeo de isótopos blanco pesados con proyectiles atómicos cargados en aceleradores; más allá del fermio todos los elementos se obtienen por bombardeo de iones pesados.
Se predice que los transactínidos que siguen al elemento 106 tendrán una vida media muy corta, pero consideraciones teóricas sugieren una estabilidad nuclear mayor, si se comparan con los elementos precedentes y sucesivos, para una gama de elementos situados alrededor de los números atómicos 110, 115 o 120 a causa de la estabilidad predicha por Derivarse De Capas Nucleares Cerradas.

Elementos de Importancia económica
Combustibles y carburantes.
Los combustibles son cuerpos capaces de combinarse con él oxigeno con desprendimiento de calor. Los productos de la combustión son generalmente gaseosos.
Por razones practicas, la combustión no debe ser ni muy rápida ni demasiado lenta.
Puede hacerse una distinción entre los combustibles quemados en los hogares y los carburantes utilizados en los motores de explosión; aunque todos los carburantes pueden ser empleados como combustibles, no ocurre lo mismo a la viceversa.
Clasificación y utilización de los combustibles:
Los distintos combustibles y carburantes utilizados pueden ser: sólidos, líquidos o gaseosos.
Combustibles sólidos.
Carbones naturales:
Los carbones naturales proceden de la transformación lenta, fuera del contacto con el aire, de grandes masas vegetales acumuladas en ciertas regiones durante las épocas geológicas. El proceso de carbonización, en unos casos, muy antiguo, además de que influyen otros factores, como las condiciones del medio ambiente y el tipo de vegetal original. Se han emitido numerosas teorías para explicar la formación de las minas de carbón, pero ninguna es totalmente satisfactoria.
Madera:
La madera se utiliza sobre todo en la calefacción domestica. En los hogares industriales, salvo en los países en que es muy abundante, no suele emplearse.


Combustibles líquidos.
Petróleo:
Se encuentra en ciertas regiones del globo (Estados Unidos, Venezuela, U.R.S.S., etc.) en yacimientos subterráneos, se extrae haciendo perforaciones que pueden alcanzar los 7000 m de profundidad. Él petróleo bruto, que contiene agua y arena, es llevado a unos recipientes de decantación; si no se refina en el lugar de extracción, es transportado por medio de tuberías de acero estirado, de un diámetro interior de 5 a 35 cm, que son los llamados oleoductos o pipelines.
El petróleo bruto, líquido de aspecto muy variable, es una mezcla extremadamente compleja de numerosos hidrocarburos, con pequeñas cantidades de otras sustancias.
Según su origen, predominan los hidrocarburos saturados o los hidrocarburos cíclicos; pero en todos los petróleos los dos tipos de hidrocarburos existen en proporciones muy variables.
Combustibles gaseosos.
Gas natural:
En el interior de la corteza terrestre existen bolsas que contienen cantidades importantes de gases combustibles cuyo origen es probablemente análogo al de los petróleos. La presión de estos gases suele ser elevada, lo cual permite su distribución económica a regiones extensas. Están constituidos principalmente por metano, con pequeñas cantidades de butano, y aun por hidrocarburos líquidos. Estos, una vez extraídos, constituyen un buen manantial de gasolina.
Butano y Propano:
Se extraen del petróleo bruto, en el que se encuentran disueltos. También se originan en las diversas operaciones del tratamiento de los petróleos. Son fácilmente licuables a una presión baja y pueden transportarse en estado liquido en recipientes metálicos ligeros.
Son utilizados como gases domésticos en las regiones donde no existe distribución de gas del alumbrado.
Hidrógeno:
El hidrógeno puro, generalmente producido por electrólisis del agua, no se utiliza como combustible más que en soldadura autógena y en la fabricación de piedras preciosas sintéticas. En este caso es irreemplazable: como no contiene carbono, no existe el peligro de que altere la transparencia de las piedras.
Acetileno:
Se obtiene por acción del agua sobre el carburo de calcio. Da una llama muy caliente y muy brillante. Se emplea en soldadura y para el alumbrado; pero estas son aplicaciones accesorias: el acetileno es, sobre todo, un intermediario importante en numerosas síntesis químicas industriales
Elementos Contaminantes
PLOMO:
El plomo se encuentra en la naturaleza en forma de carbonato, y de sulfato, casi todo el plomo del comercio se obtiene del sulfuro que constituye el mineral galena.
Se trata de un metal color gris, pesado, blando y poco resistente a la tracción. Recién cortado presenta una superficie brillante que expuesta al aire, se empaña rápidamente por oxidación; la capa opaca de oxido lo protege de un ulterior ataque.
El plomo reacciona muy lentamente con el ácido clorhídrico, y el ácido sulfúrico y frío apenas lo ataca, por formarse sulfato insoluble que lo preserva de su acción ulterior. El plomo puesto en contacto con agua dura se recubre de una capa protectora de sales insolubles, como sulfato, bicarbonato básico o fosfato. El agua destilada y la de lluvia, que no contienen substancias disueltas capaces de formar esta película, atacan el metal a causa del oxigeno que llevan disuelto, y forman hidróxido de plomo, algo soluble.
Los compuestos solubles de plomo son venenosos, y por lo tanto, los tubos de plomo para conducir agua potable solo pueden utilizarse con seguridad si el agua es algo dura.
El plomo se usa para fabricar tubos de cañerías y revestir cables eléctricos. También se usan las instalaciones de ácido sulfúrico y en acumuladores de plomo.
Los vapores de plomo son los causantes de una gran enfermedad llamada saturnismo, caracterizada entre otros síntomas por anorexia, constipación pertinaz, anemia parálisis muscular, insomnio, angustia etc. Suele afectar a mineros que extraen plomo, a tipógrafos a pintores y a quienes fabrican acumuladores.
Existen diferencias importantes en la epidemiología, manifestaciones clínicas de la intoxicación por el plomo en los niños y adultos.
En los niños, la enfermedad debe ser debida a la malacia o pica (perversión del apetito que lleva al niño a ingerir cosas impropias para la nutrición) o mordisque de objetos decorados con pinturas que contienen plomo.Página 78
En los adultos, la intoxicación por plomo es comúnmente de origen profesional aunque raras veces puede ser causada por el consumo de bebidas o alimentos contaminados.
Los síntomas en los niños son: dolor abdominal, vómitos, somnolencia, irritabilidad, debilidad o convulsiones; coma, signos de elevación de la presión intracraneal.
En los adultos: anorexia, estreñimiento, molestias, intestinales, debilidad, fatiga, dolor de cabeza, palidez. En los casos graves puede haber espasmos abdominales. La línea del plomo solo puede aparecer cuando es deficiencia de la higiene de la boca.
ARSÉNICO:
El arsénico se encuentra libre en la naturaleza, y también combinado en diversos minerales: rejalgar, rojo, oropimente, amarillo, mispiquel O pirita arsenical, cobaltina y arseniosita. El trióxido de arsénico se obtiene tostando minerales de arsénico; él oxida sublima y se recoge como polvo blanco en la chimenea.
El arsénico es un sólido quebradizo, cristalino, de color gris de acero. Sublima fácilmente, formando vapores amarillos tóxicos de olor alacio. El arsénico existe en tres formas alotrópicas: gris cristalinas, amarilla cristalinas y negra amorfa.
La variedad amarilla es análoga al fósforo blanco. La variedad gris se parece estructuralmente al fósforo violeta.
El arsénico es relativamente inerte a las temperaturas ordinarias, pero calentado al aire arde como llama azulada produciendo nubes blancas del trióxido sólido.
Aunque todos los compuestos solubles de arsénico son venenosos, algunos tienen uso en medicina. Los que lo consumen adquieren cierta tolerancia al mismo y pueden tomar mayores cantidades de las que otras personas no habituadas.
Los compuestos de arsénico se utilizan en agricultura en pulverizaciones y baños para ganado, con el fin de destruir insectos y parásitos.
Los síntomas de la ingestión de arsénico son:
Sabor metálico, dolor urente en esófago y estomago, dolores cólicos, vómitos y diarrea profusa con heces de agua de arroz”. Seguida de deposiciones sanguilonentas, depresión, sed intensa, sequedad de boca y garganta, sensación de constricción en la garganta, olor aliaceo del aliento y las heces, vértigo, cefalea central, calambres musculares, piel fría, viscosa; Pulso pequeño, rápido y débil; extremidades frías, cianosis, Página 79respiración anhelante, estupor, colapso circulatorio, convulsiones, coma erupciones cutáneas, oliguria, albuminuria, hematuria.
ESTAÑO:
Se halla en la naturaleza en una proporción ponderal algo superior al 0,003% y suele presentarse combinado, especialmente bajo la forma de oxido o casiterita, muy abundante en Bolivia, Indonesia, y Malacia.
El estaño es un metal blanco, mas blando que el cinc, pero más duro que el plomo. A 200°C se vuelve muy quebradizo y puede pulverizarse.
El estaño se usa como recubrimiento protector del hierro en la hojalata. La hojalata se emplea para fabricar botes y objetos similares.
Asimismo se usa el estaño en la fabricación de aleaciones, tales como el hombre (cobre, ¡estaño), metal de soldar (estaño, plomo), y metal de imprenta(estaño, plomo y antimonio.
Las aleaciones ricas en estaño se utilizan para elaborar el metal antifricción (metal blanco), con el que se recubre la cara interior de los cojinetes. La aleación con el plomo constituye la base de las denominadas soldaduras blandas.
El óxido estánico son discretamente nocivos, y en caso de inhalación de fuertes dosis se puede producir un aumento de temperaturas; la inhalación repetida suele causar una neuropatía.
El cloruro estánico puede producir irritación bronquial y enema pulmonar.
Los derivados orgánicos del estaño son muy tóxicos, pueden causar un cuadro de agitación y delirio al que siguen con frecuencia un estado de coma con hipertensión endocraneana.
MERCURIO:
Se encuentra nativo en la naturaleza en algunos casos, pero su mineral más abundante es el cinabrio. Solo representa 0,5 ppm de la corteza terrestre.
Es el único metal que, a las temperaturas ordinarias, adopta el estado líquido.
No se oxida en el aire a temperaturas ordinarias, pero se combina lentamente con el oxígeno cuando se mantiene en la atmósfera cerca de su punto de ebullición. Por su inactividad general y su reducida presión de vapor, se emplean bombas de vacío, y en el laboratorio, para confinar gases.
A elevadas temperaturas, el vapor de mercurio conduce la corriente eléctrica.
El mercurio forma con muchos metales amalgamas, liquidas cuando la proporción del otro metal es pequeña, pero pastosas y hasta sólidas al aumentar dicha proporción. Las amalgamas de estaño, plata y oro se usan en odontología.
A pesar de sus beneficiosas aplicaciones médicas, el mercurio provoca unas intoxicaciones (como la estomatitis mercurial y el hidragirismo) que afectan diversos órganos, especialmente el riñón y los aparatos digestivo y nervioso.
Intoxicación mercurial aguda:
Síntomas: Cuando el tóxico se ha ingerido en forma concentrada produce: dolor urente en e la boca, garganta y estómago, salivación, dolores, cólicos, vómitos graves, náuseas, diarrea, pérdida copiosa de líquidos.
Intoxicación mercurial crónica:
Este envenenamiento puede ser consecuencia de la inhalación de vapores de mercurio o de polvo de sales mercuriales. El mercurio, puede absorberse a través de la piel intacta.
Los compuestos alquílicos de mercurio pueden causar perturbaciones mentales; excitación seguida de depresión, que puede ser grave y de larga duración.
CADMIO:
Como es más volátil que el cinc, el cadmio contenido en las menas de cinc se encuentra en la primera porción del metal que se obtiene; se separa del cinc por destilación fraccionada. También se separa y recupera en la afinación electrolítica del cinc. Si el voltaje se regula convenientemente únicamente se deposita cinc puro; el cadmio queda en el barro anódico del cual se recupera por destilación.
El cadmio es de color blanco con ligero tono azulado, siendo mucho más maleable que el zinc.
Se emplea principalmente en la preparación de aleaciones de bajo punto de fusión para extintores automáticos de incendios y fusibles, y también para recubrir hierro, a fin de protegerlo de la oxidación. Barras de cadmio se emplean en los reactores nucleares para absorber los neutrones y regular el proceso de fisión.
Las sales solubles más importantes del cadmio son el cloruro, eflorescente y el sulfato. El ión cadmio hidratado es un ácido débil.


Sintomatología:
Por ingestión: espasmos gástricos y abdominales violentos, vómitos, diarrea. Por inhalación: sequedad faríngea, tos, sensación de constricción torácica; coloración parda de la orina (óxido de cadmio): diseña intensa, piel fría.
ZINC
Es un metal blanco brillante con lustre gris azulado, soluble en ácidos y álcalis e insoluble en agua. Constituye el 0,013% de la corteza terrestre. No se encuentra nativo, aunque en pequeña proporción se halla frecuentemente en la composición de diferentes rocas.
Las menas empleadas en la metalurgia del cinc son el óxido, el carbonato y el sulfuro.
El cinc es un metal quebradizo a la temperatura ordinaria, pero maleable entre 120° y 150°C, manteniendo después su flexibilidad al enfriarse.
El metal es químicamente activo y desplaza al hidrógeno de los ácidos diluidos, aunque su acción es muy lenta cuando es pura. No se altera en el aire seco, pero en el húmedo se oxida, recubriéndose de una película adherente de carbonato básico que lo protege de toda acción ulterior. Calentado suficientemente en el aire, arde como llama verdosa, dando óxido de cinc blanco.
El zinc se usa para techados, canalones y cornisas.
Se emplea también en las pilas eléctricas como ánodo, y forma parte de aleaciones como el latón el metal Babbitt y la plata alemana.